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Abstract

Liquid phase migration (LPM) is an interfacial-energy-driven flow that takes place in a solid–liquid two-phase system. This phenom-
enon is similar to but different from the well-known capillary-driven flow. Understanding and controlling LPM is crucial for liquid phase
sintering of various functionally graded materials, including WC–Co, with composition gradients. To date, there have been few studies
that focus on the LPM phenomenon, partially because it is a complex process that involves mass transport with moving boundaries and
changing volumes. This paper describes a quantitative study on the kinetics of LPM. The governing equation for LPM that takes into
account the changes in volume was derived and a novel ‘‘grid-tracking’’ numerical technique was also developed for solving the govern-
ing equation. The methodology and techniques described in this paper can be applied to simulate and predict the kinetics of LPM during
liquid phase sintering and the composition gradients as the result of LPM.
� 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Liquid phase migration (LPM) is a physical phenome-
non that takes place in a solid–liquid two-phase system
consisting of an aggregate of solid grains filled with a liquid
phase. In such a system the liquid phase tends to flow from
a region with a higher liquid volume fraction and/or larger
solid grains to a region with a lower liquid volume fraction
and/or smaller solid grains. LPM is similar to but different
from the well-known capillary-driven flow in porous
media, because LPM can occur in solid–liquid two-phase
systems in the absence of any pore space, while the classic
capillary-driven flow results from the interaction among
three phases: solid, liquid and gas.

LPM was first observed during the study of the manu-
facture of functionally graded cemented tungsten carbide
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[1–5] using a liquid phase sintering process with the objec-
tive of obtaining a composition gradient. It has also been
known in the industry [3–5] that the liquid cobalt phase
flows from a region with higher cobalt content or finer
grain sizes to a region with lower cobalt content or coarser
grain sizes during the liquid phase sintering of WC–Co.
Fundamental understanding of the principles behind the
LPM phenomenon, however, is lacking. This lack of
knowledge in turn makes it difficult to control LPM during
sintering or to make use of the phenomenon for the design
of advanced materials. Therefore, understanding and con-
trolling LPM is crucial for the manufacture of functionally
graded WC–Co and other materials [6–10]. On the one
hand, LPM can be exploited to create and control the com-
position gradient within a material; on the other hand, it
can cause distortion and undesired inhomogeneity and
defects within the material. To date, however, there are
few studies that focus on the LPM phenomenon, partially
because it is a complex process that involves mass transport
with moving boundaries and changing volumes.
rights reserved.
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Fig. 1. Schematic drawing explaining the driving force for the LPM
phenomenon, as demonstrated by the spontaneous imbibition of liquid
when a fully densified sintered composite material is immersed in a melt
whose composition is the same as the liquid phase inside the composite
material. (a) Before LPM occurs. (b) After LPM stops.

Nomenclature

A cross-sectional area (m2)
d grain size (m)
kp permeability (m2)
l length (m)
Pm liquid migration pressure (Pa)
t time (s)
u liquid volume fraction (=Vl/(Vl + Vs), where Vl

and Vs are liquid volume and solid volume,
respectively)

V volume (m3)
l viscosity (kg m�1 s�1)
m velocity of liquid flow (m s�1)

Subscripts

0 at time zero
l liquid
s solid
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In this paper, we present a quantitative study on the
kinetics of LPM. We will first describe the driving force
for LPM. Then, the governing equation for LPM that
takes into account the changes in volume is derived.
A numerical solution method – the grid-tracking technique
– for moving boundary conditions is developed. In the final
section, we will present the simulation results on
composition gradients in liquid phase sintering of WC–
Co composite materials.

2. Driving force for LPM

When a porous medium is put in contact with a liquid
pool, the liquid will be imbibed into the porous medium
to fill in the pores, assuming the liquid wets the porous
medium. This spontaneous imbibition of a liquid into a
porous medium is attributed to the capillary force at the
solid–liquid–gas interface and thus is termed the capil-
lary-driven flow. Capillary-driven flow is important in
many industries such as paper printing, textiles, filtration,
contamination control and oil recovery [11–14]. Spontane-
ous liquid imbibition can also occur in a solid–liquid two-
phase mixture without involving a gas phase. For example,
it was shown that, when a fully densified, porosity-free mix-
ture of solid WC grains in a liquid Co matrix at 1400 �C
was put into contact with a Co melt pool at the same tem-
perature, the composite body imbibed a large amount of
liquid Co and expanded [3]. This type of spontaneous
liquid imbibition is distinctly different from the conven-
tional capillary-driven flow that involves interactions
among three phases (i.e., two fluids and a solid). The term
‘‘liquid phase migration’’ (LPM) is used specifically to refer
to the flow of the liquid phase in these situations, so as to
distinguish it from that in a gas-filled porous medium [3].

The thermodynamic driving force for LPM in a solid–
liquid two-phase system can be attributed to the reduction
of the total interfacial energy of the system [3,15,16]. This
driving force can be described using the term ‘‘liquid migra-
tion pressure’’ [3,4]. Fig. 1 schematically explains the driv-
ing force for this phenomenon, as demonstrated by the
spontaneous liquid imbibition when a fully densified
composite material is immersed in a melt whose composi-
tion is the same as the liquid phase inside the composite
material. As shown in Fig. 1a, before LPM occurs the small
liquid volume inside the composite material causes a high
solid–solid interfacial area and a small solid–liquid interfa-
cial area and, consequently, a high total interfacial energy
of the system. Thus, the liquid migration pressure inside
the composite material, (Pm)in , is higher than the liquid
migration pressure outside, (Pm)out. This difference in
liquid migration pressures will drive the liquid to flow into
the composite material from outside. Accompanying the
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Fig. 2. Schematic of changes in shape and volume of a solid–liquid two-
phase system during LPM. Here, the bottom side of the system is put in
contact with a liquid pool. The system imbibes the liquid, its volume
expands and thus the shape changes. At time zero, the distance of an
arbitrarily selected control volume with a volume of V0 and a cross-
sectional area of A0 is l0 from the bottom. After LPM, the volume, the
cross-sectional area and the distance become V, A and l, respectively.
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liquid imbibition and the consequent increases in both
liquid volume and total volume of the composite material,
as shown in Fig. 1b, the solid grains are re-oriented to
decrease the solid–solid interfacial area and increase the
solid–liquid interfacial area. Consequently, this process
decreases both the total interfacial energy and (Pm)in. If
there is sufficient liquid, liquid imbibition will not stop until
the total interfacial energy reaches the minimum value
when the solid–solid interfacial area vanishes completely.
At that time, (Pm)in becomes zero and equal to (Pm)out,
thus eliminating the difference in liquid migration pressures
inside and outside the composite material. Therefore, the
driving force for LPM can be attributed to a reduction in
the total interfacial energy of the system or a difference in
liquid migration pressures of different regions in the sys-
tem. The statement that the total interfacial energy
decreases with increasing solid–liquid interface area and
decreasing solid–solid interface area is based on the
assumption that the liquid wets the solid grains. This
assumption holds true for most composite materials.

The higher the liquid migration pressure, the stronger
the imbibing force the system exerts on the external liquid.
In other words, the liquid migration pressure may also be
called the imbibition pressure. The liquid migration pres-
sure of a liquid without solid grains is zero and the liquid
migration pressure of a composite material with a very high
volume fraction of the liquid phase such that the contact
between solid grains completely vanishes is also zero. If
the liquid migration pressure is not uniform within a sys-
tem, liquid will flow from a region with a lower liquid
migration pressure to a region with a higher liquid migra-
tion pressure, until the liquid migration pressure becomes
uniform everywhere in the system.

3. Governing equation and numerical solution method

3.1. Governing equation

In order to describe the LPM phenomenon quantita-
tively, the governing equation that describes it has to be
established. The challenge for establishing the governing
equation of LPM lies in the fact that LPM is always
accompanied by changes in shape and volume of the sys-
tem, as illustrated in Fig. 2. The volume and shape changes
will result in changes in the length in the direction of the
LPM and the area across which the liquid phase migrates,
which in turn lead to a considerably greater complexity
when attempting to establish and solve the governing equa-
tion. Mathematically, this problem belongs to a category of
moving boundary problems with variable volumes and
shapes [17].

The solid–liquid system can be viewed as consisting of
two parts: one is the solid phase skeleton consisting of all
solid grains; the other is the liquid phase filling in the skel-
eton. To model LPM in such a system, three assumptions
are made: first, that the solid phase skeleton is not rigid,
in other words the grains that make up the skeleton are
not rigidly bound together, but separable during the pro-
cess; second, that the grain shapes and sizes are held con-
stant; and, third, that there is no chemical gradient
within the system except that the volume fraction of the
liquid phase may vary with locations. These assumptions
are reasonable with respect to real-life materials. Further
validation of these assumptions will be given in Section 5.

Because the solid phase skeleton is not rigid, the skele-
ton can expand or shrink depending on the volume of
liquid phase enclosed within it. This means that, relative
to any fixed space coordinate, the solid phase skeleton
has a velocity that varies with time and location and is
dependent on the rate of the liquid phase flow; and the
absolute velocity of liquid phase flow is the combination
of its velocity relative to the skeleton and the velocity of
the skeleton relative to the fixed coordinate. The coupling
between the velocities of the skeleton and the liquid phase
makes it difficult to establish the governing equation for
LPM using fixed space coordinates.

To overcome this hurdle, we use a moving coordinate l

in the direction of LPM (see Fig. 2). In this coordinate, the
motion at any point is relative to the solid phase skeleton at
that point and thus the velocity of the solid phase skeleton
at any point is zero. By doing this, the space coordinate is
attached to the solid phase skeleton and thus the velocity of
the liquid phase is relative to the skeleton. Therefore, for
any arbitrarily selected control volume in this coordinate,
the volume of the solid phase skeleton is constant because
of its zero velocity. Consequently, the volume change of the
selected control volume results solely from imbibing the
liquid, bridging the relations between the volume, the
cross-sectional area and the liquid volume fraction in the
control volume.

We assume one-dimensional liquid migration in the
x-direction. By defining the lengths of the sides of a control
volume (in Fig. 3), as Dl, Dly and Dlz, respectively, the
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volume, V, and the cross-sectional area perpendicular to
the direction of LPM, A, are

V ¼ DlDlyDlz ð1Þ
A ¼ DlyDlz ð2Þ

Based on conservation of the liquid volume, Vl, in the con-
trol volume, we obtain

dV l

dt
þ Dl

o

ol
ðvAÞ ¼ 0 ð3Þ

where v is the velocity of the liquid flow relative to the skel-
eton consisting of solid grains.

Since the solid volume, Vs, in the control volume
remains constant, we get

dV
dt
¼ d

dt
ðV l þ V sÞ ¼

dV l

dt
ð4Þ

Therefore, Eq. (3) can be rewritten as

dV
dt
þ Dl

o

ol
ðvAÞ ¼ 0 ð5Þ

Assuming that volume expansion or shrinkage is uniform
in the x-, y- and z-directions, we get

Dly ¼ c1Dl ð6Þ
Dlz ¼ c2Dl ð7Þ

where c1 and c2 are constants which are independent of
time.

Introducing Eqs. (6) and (7) into Eqs. (1) and (2) leads
to

V ¼ DlDlyDlz ¼ c1c2Dl3 ð8Þ
A ¼ DlyDlz ¼ c1c2Dl2 ð9Þ

Thus,

dV
dt
¼ d

dt
ðc1c2Dl3Þ ¼ 3Dl2c1c2

dðDlÞ
dt

ð10Þ

dA
dt
¼ d

dt
ðc1c2Dl2Þ ¼ 2Dlc1c2

dðDlÞ
dt

ð11Þ

Comparing Eqs. (10) and (11) leads to

dV
dt
¼ 3

2
Dl

dA
dt

ð12Þ

Introducing Eq. (12) into Eq. (5) and re-arranging, we get

oA
ot
¼ � 2

3

o

ol
ðvAÞ ð13Þ
Assuming that Darcy’s law on liquid flow in porous media
is applicable to this system, the velocity of the liquid flow
relative to the skeleton consisting of solid grains, v, should
be proportional to the gradient of the liquid migration
pressure, Pm, with respect to l, that is,

v ¼ kp

l
oP m

ol
ð14Þ

where kp is permeability and l is the viscosity of liquid.
Replacing v in Eq. (13) with

kp

l
oP m

ol

according to Eq. (14) leads to

oA
ot
¼ � 2

3

o

ol
A

kp

l
oP m

ol

� �
ð15Þ

which can be rewritten as

oA
ot
¼ � 2

3

o

ol
kpA
l

� �
oP m

ol
þ kpA

l
o

2P m

ol2

� �
ð16Þ

In Eq. (16), A, Pm and kp are all dependent on liquid vol-
ume fraction, u = Vl/(Vl + Vs).

The relation between the cross-sectional area, A, and the
liquid volume fraction, u, is derived by the following proce-
dure. The volume of solid phase, Vs, in the control volume,
V, remains constant. Therefore,

V s ¼ V ð1� uÞ ¼ V 0ð1� u0Þ ð17Þ

Thus,

V
V 0

¼ 1� u0

1� u
ð18Þ

Based on Eqs. (8) and (9), we get

V 0

V
¼ Dl0

Dl

� �3

ð19Þ

A0

A
¼ Dl0

Dl

� �2

ð20Þ

where the subscript 0 indicates time zero.
Comparing Eqs. (19) and (20) leads to

V 0

V
¼ A0

A

� �1:5

ð21Þ

Introducing Eq. (21) into Eq. (18) and re-arranging, the
relation between A and u is obtained to be

A ¼ A0

1� u0

1� u

� �2=3

ð22Þ

where A0 and u0 are, respectively, the cross-sectional area
and the liquid volume fraction at time zero.

Finally, introducing Eq. (22) into Eq. (16) and re-
arranging, the following equation is obtained:
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A0ð1�u0Þ2=3 oð1�uÞ�2=3

ot
¼�2

3

o

ol
kp

l
1�u0

1�u

� �2=3

A0

 !
oP m

ol

"

þ kp

l
1�u0

1�u

� �2=3

A0

o2P m

ol2

#

ð23Þ

where A0 is cross-sectional area perpendicular to the LPM
direction at initial time (m2); t is time (s); u is liquid volume
fraction (=Vl/(Vl + Vs), where Vl and Vs are liquid volume
and solid volume, respectively); u0 is liquid volume fraction
at initial time; l is the distance in the LPM direction (m); kp

is the permeability of the system, in units of m2; l is the vis-
cosity of liquid (kg m�1 s�1); and Pm is the liquid migration
pressure (Pa). Since Pm and kp are both dependent on li-
quid volume fraction u, Eq. (23) is an equation with u as
the dependent variable and t and l as the independent
variables.

This equation is the governing equation of LPM that is
applicable to any material system that satisfies the three
basic assumptions. It is noted, however, that the governing
equation has been derived without any assumptions with
regard to microstructure parameters such as dihedral
angles and the shapes of the grains. The effect of the micro-
structure parameters of the material system is implicit by
their effects on the values of Pm and kp.

3.2. Numerical solution method

The governing equation of LPM, i.e., Eq. (23), is a non-
linear partial differential equation and thus can only be
solved numerically. The finite-difference method, more spe-
cifically the MacCormack method – an explicit two-step
(i.e., predictor–corrector) method that has been proved
very efficient and thus popular for solving nonlinear partial
differential equations [18] – was used in this study. It should
be noted that l, the distance from one end of the two-phase
system, varies with time, as shown in Fig. 2. Its value must
be obtained by summing up the values of Dl which are
updated for each time-step according to the following rela-
tion, obtained by introducing Eq. (20) into Eq. (22):

Dl ¼ Dl0

1� u0

1� u

� �1=3

ð24Þ

Since the space coordinates of all grid points are tracked
(i.e., updated) for each time-step, this method can be
termed the ‘‘grid-tracking technique’’. The finite-difference
equation of the governing equation of LPM, i.e., Eq. (23),
and the detailed solution algorithm is given in Appendix A.
4. Simulation results

Eq. (23) is a general governing equation for LPM, indi-
cating that it can be applied to describe the LPM phenom-
enon occurring in any solid–liquid two-phase systems. The
numerical solution of this equation is, of course, dependent
on the characteristics of specific system, since both liquid
migration pressure, Pm, and permeability, kp, are depen-
dent on specific physical parameters of the system. In this
study, the cemented tungsten carbide system (WC–Co)
was used as the model system because of its wide-ranging
industrial applications [19,20].

The dependence of liquid migration pressure on the
solid grain size and the liquid volume fraction in the
WC–Co system is obtained as follows [21]:

P m ¼ 2048bð1=u� 1Þ1=3 � 1:41uc=d0:4 ð25Þ
where Pm is in Pa and d is in m. This equation and the val-
ues of the constants in the equation are determined exper-
imentally for the WC–Co system. They depend implicitly
on the properties of the materials and the geometric shape
of the grains.

According to Rumpf and Gupte [22], the relation
between the permeability, kp, the liquid volume fraction,
u, and the solid grain diameter, d, can be expressed as

kp ¼ cd2um ð26Þ
where c and m are constants. Note that Eq. (26) is a semi-
empirical relation which has been applied extensively to a
large variety of porous media including loosely packed par-
ticles, filters, rocks and so on. The values of c and m are
typically determined on a case-by-case basis for each spe-
cific different material system [12,23,24]. During liquid
phase sintering at high temperatures, cemented tungsten
carbide – the model material of the present study – consists
of a solid WC skeleton and liquid cobalt, which occupies
interstitial places between WC grains. It is assumed that
the WC skeleton is not rigid. Therefore, the WC–Co system
is similar to many systems of loosely packed particles to
which the Rump and Gupte equation has been successfully
applied. The Rump and Gupte equation is hence applied to
study the liquid flow in the WC–Co system during sinter-
ing. The values of c and m for WC–Co can be determined
through the following best-fitting procedure based on re-
ported data of the liquid migration rate experiments on
WC–Co [3]. For any sets of values of c and m, the corre-
sponding solutions can be obtained by substituting Eqs.
(25) and (26) into the governing equation for the LPM –
i.e., Eq. (23) – and solving it using the numerical technique
described in Section 3.2. Comparison of the numerical
solution and the reported experimental data on liquid
migration [3] leads to the best-fit values of c and m as
c = 4.5 · 10�4 and m = 1.5. Thus, the permeability for
the WC–Co system can be expressed as

kp ¼ 4:5� 10�4d2u1:5 ð27Þ
where d is WC grain size (m) and kp is permeability (m2).
Now we can predict the formation and/or elimination of
the Co gradient during the liquid phase sintering of WC–
Co.

A set of experimental results were reported by Lisovsky
[3] for fully densified WC–Co sintered bars imbibing Co
melt after one side of the WC–Co bar was put into contact
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with the Co melt; l is the distance from the contacting inter-
face between the WC–Co bar and the Co melt; u is the
liquid Co volume fraction in the WC–Co bar. The initial
Co content in the WC–Co was 5.9 wt% and the saturated
Co content in WC–Co was 32 wt%. The volume fraction
of liquid Co was calculated from the molar volumes and
mole fractions of WC and liquid Co. The molar volume
of liquid Co depends on its composition, which was deter-
mined from W–Co–C ternary phase diagram [25]. The
molar volumes of the pure elemental Co, C and W in the
liquid Co phase (which are also needed for the calculation
of the molar volume of liquid Co) and the molar volume of
WC are all available in the literature [26]. The viscosity of
liquid Co is also available in the literature [27]. Fig. 5 shows
that the model prediction agrees well with the experimental
results on liquid imbibition into fully densified sintered
materials.

Another simulation was conducted for an 8 mm thick
WC–Co bi-layer specimen. The specimen had a built-in
Co gradient in the green part. The grain size of WC was
the same in both layers (with average WC grain size – lin-
ear intercept length – of 2 lm after liquid phase sintering
for 5 min). The results of the simulation as illustrated by
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Fig. 5. Comparison between the simulation in this study and the
experimental results of Lisovsky [3] on the rate of LPM in the WC–Co
system.
Fig. 6 show that the cobalt gradient changes with the time
of sintering. Initially, Co contents in the two layers were
6% and 16%, respectively. As the sintering time increased,
the Co gradient decreased. The Co gradient was eliminated
completely in 6 min. This result is again consistent with our
experimental results, which showed that the cobalt gradient
was eliminated in 5 min.

The good agreement between the simulated and experi-
mental results mentioned above validates the use of the
model to predict the variation of Co gradient in WC–Co
materials as functions of the grain size, initial Co content
distribution, the sample thickness and length of sintering
period. Fig. 7 illustrates the prediction of transient Co gra-
dients for two 20 mm thick WC–Co bi-layers, one (Fig. 7a)
with identical WC grain sizes but different initial Co con-
tents and the other (Fig. 7b) with identical initial Co con-
tents but different WC grain sizes.

5. Discussion

As mentioned earlier, the above derivation and solution
of the LPM problem was based on three basic assumptions.
The validity of these three assumptions, hence the rele-
vance of the present work to real-life materials, is further
discussed as follows.

First, the solid phase skeleton consisting of all solid
grains is flexible rather than rigid. In other words, the
grains that make up the skeleton are separable during
the LPM process such that the skeleton can expand or
shrink depending on the volume of liquid phase enclosed
in the skeleton. This assumption is undoubtedly true at
relatively low temperatures for solid–liquid two-phase
systems because there are no rigid bondings between
the grains. During liquid phase sintering at higher tem-
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peratures, however, the contact between solid grains
depends strongly on the dihedral angle between the solid
phase and the liquid phase. For materials systems with
the dihedral angle larger than zero, rigid bondings may
form between grains after a period of sintering. For these
systems, LPM can only occur before rigid intergranular
bondings form, because a flexible skeleton consisting of
separable grains is a prerequisite for LPM to be able
to occur. When the dihedral angle is zero, however, as
for materials systems such as many metal–ceramic and
ceramic–ceramic composite materials such as WC–Co
[3] and SrTiO3–Nb2O5 [28], the liquid phase will pene-
trate the grain boundaries and form liquid films at the
grain boundaries, so that all the grains are separated
without forming rigid bonds between them [8,28]. The
flexibility of the solid phase skeleton has also been exper-
imentally demonstrated by Lisovsky’s experiment of dip-
ping a fully densified WC–Co specimen in a liquid pool
of cobalt and showing that the sintered body swells
because of the imbibition of the liquid Co [3]. In short,
the present model can be applied to many materials sys-
tems depending on the value of the dihedral angle of the
system.

In Section 2, it was mentioned that LPM is driven by
the reduction of total interfacial energy of the system,
through decreasing solid–solid interface area and increas-
ing solid–liquid interface area. However, when the dihe-
dral angle is zero in materials such as WC–Co, the
grain-to-grain contact consists of a liquid film [28]. The
so-called solid–solid interface, in this case, should be more
precisely termed a ‘‘solid-to-liquid-film interface’’. The
interfacial energy of solid-to-liquid-film interface is differ-
ent from that of the solid-to-bulk-liquid interface, since
the properties and microstructure of liquid films are differ-
ent from those of bulk liquid phase [28]. Therefore, the
LPM can be attributed to the reduction of total interfacial
energy of the system, through decreasing solid-to-liquid-
film interface area and increasing solid-to-bulk-liquid
interface area.

The second assumption of the present model is that the
grain shape and size are held constant during the LPM pro-
cess. For many materials systems, including WC–Co, this is
reasonable because compared to the rate of liquid migra-
tion, the rate of grain growth is very slow [3,29]. In other
words, the effect of the changes of grain shape and size lags
behind the changes due to liquid migration. Liquid migra-
tion will be complete before grain shape and size will have
changed significantly. For example, no significant changes
in WC grain shape and size were observed in a WC–Co sys-
tem that had undergone a considerable LPM [3]. Of course,
for different materials systems this could be different. In a
case where the sintering time is long or the change in grain
shape and size is fast for any specific material system, the
change of grain shape and size can be readily incorporated
into the model if the rate of grain shape and size change as
a function of time and other material parameters is
available.

The third assumption is that the chemical compositions
of the liquid phase and the solid grains are homogeneous
throughout the composite. In other words, the LPM dis-
cussed in this paper is solely due to the differences in grain
sizes and the nonuniformity of the distribution of the liquid
phase within the composite. In practice, this type of LPM,
involving no chemical gradients or chemical changes, is
well-known in industry [5,6], although not well understood.
It is important to note, however, that LPM may also be
induced if there were chemical gradients within the material
in the absence of any differences in grain size or volume
fraction of the liquid phase. For example, migration of
liquid Co will occur in TiN containing WC–Co materials
during liquid phase sintering in which the Co migration
is attributed to Co and Ti diffusion associated with the
chemical gradient of titanium and nitrogen [30–34]. This
type of LPM induced by chemical gradients is beyond the
scope of this paper.
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6. Summary

A mathematical model that describes the rate of LPM
has been formulated. A governing equation that takes
into account the changes in volume has been derived
and a novel ‘‘grid-tracking’’ numerical technique has been
developed for solving the governing equation. The model
successfully describes the LPM in a solid–liquid phase
mixture as a function of grain size and liquid volume frac-
tion. The dependence of the LPM process on the grain
size and volume fractions and the compositional gradients
in a liquid-phase-sintered composite as a result of LPM
can be numerically simulated and this simulation can in
turn be used for the design and manufacture of function-
ally graded materials. The results of the simulations of the
transient composition gradients during liquid phase sinter-
ing of WC–Co agree well with the reported experimental
data. The method described in this paper can also be
applied to the modeling of other composite materials, if
the dependences of the liquid migration pressure and
the permeability on grain size and liquid volume fraction
are known by either experimental measurement or theo-
retical estimation.
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Appendix A. Numerical solution method of the governing

equation of LPM

In this study, the governing equation of LPM, i.e., Eq.
(23), was solved numerically by a finite-difference method,
the MacCormack method – an explicit two-step (i.e., pre-
dictor–corrector) method that has been proved very effi-
cient and thus popular for solving nonlinear partial
differential equations [18].

The finite-difference equations for the predictor and the
corrector steps are obtained to be Eqs. (A1) and (A2),
respectively, as follows:
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where the subscripts i � 1, i and i + 1 denote the space grid
lines; the superscript n and n + 1 denote the time grid lines;
and the superscript nþ 1 denotes provisional (i.e., predicted)
values for the n + 1 time grid line, calculated from Eq. (A1)
at the predictor step. Due to the differences in expansion or
shrinkage at each space point, the space grid is nonuniform –
as shown in Fig. 4 – and thus the second-order space deriv-
ative in the partial differential equation (i.e., Eq. (23)) was
approximated by Lagrange-type polynomials [18].

It should be noted that l, the distance from one end of the
two-phase system, varies with time, as shown in Fig. 2. Its
value must be obtained by summing up the values of Dl which
are updated for each time-step according to the following
relation, obtained by introducing Eq. (20) into Eq. (22):

Dl ¼ Dl0

1� u0

1� u

� �1=3

ð24Þ

Using the average values of ui and ui�1 (i.e., 0.5(ui + ui�1))
to replace u values between grids i and i � 1, Eq. (24) can
be written as Eqs. (A3) and (A4), for the predictor and
the corrector steps, respectively
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Since the space coordinates of all grid points are tracked
(i.e., updated) for each time-step, this method can be
termed the grid-tracking technique.

The solution algorithm is listed below.

1. Input Dt, l and di (solid grain size at each grid).
2. Input the initial values: (u0)i, (l0)i and (A0)i.
3. Start from time zero, i.e., n = 1. At this time, un

i ¼ ðu0Þi
and ln

i ¼ ðl0Þi.
4. Calculate ðkpÞni and ðP mÞni , based on the dependence of

kp and Pm on u and d (e.g., Eqs. (27) and (25) for the
WC–Co system).

5. In the predictor step, firstly calculate unþ1
i from Eq. (A1);

then calculate lnþ1
i from Eq. (A3); and finally calculate

ðkpÞnþ1
i and ðP mÞnþ1

i .
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6. In the corrector step, firstly calculate unþ1
i from Eq. (A2);

then calculate lnþ1
i from Eq. (A4); and finally calculate

ðkpÞnþ1
i and ðP mÞnþ1

i .
7. Let t = t + Dt, un

i ¼ unþ1
i , ln

i ¼ lnþ1
i , ðkpÞni ¼ ðkpÞnþ1

i and
ðP mÞni ¼ ðP mÞnþ1

i . Repeat steps (5)–(7), until required
time t is reached.

Appendix B. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.actamat.
2007.01.015.
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